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Figure 1: AR serves as a visual (noise) canceling technique to mitigate cognitive impairment caused by distractions (e.g.,
smartphones). Visual Camouflage (center) disguises the features of the smartphone through a projection of a hologram that
closely matches the object’s dimensions and mimics the background’s color and texture, making the smartphone less noticeable.
Visual Substitution (right) modifies the immediate view of the smartphone with a contextually congruent hologram, such as
books in a desk environment, subtly altering the user’s perception of the scene.

Abstract
Smartphones are integral to modern life, yet research highlights the
cognitive drawbacks associated with their mere presence. While
physically removing them can mitigate these effects, it is often in-
convenient and may heighten anxiety due to prolonged separation.
To address this, we use holographic augmented reality (AR) displays
to visually diminish distractions with two interventions: 1) Visual
Camouflage, which disguises the smartphone with a hologram that
matches its size and blends with the background, making it less no-
ticeable, and 2) Visual Substitution, which occludes the smartphone
with a contextually relevant hologram, like books on a desk. In a
study with 60 participants, we compared cognitive performance
with the smartphone nearby, remote, and visually diminished by
our AR interventions. Our findings show that the interventions
significantly reduce cognitive impairment, with effects comparable
to physically removing the smartphone. The adaptability of our
approach opens new avenues to manage visual distractions in daily
life.
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1 Introduction
The ubiquity of smartphones offers constant connectivity but at a
cost. This cost, known as the brain drain effect [102], depletes men-
tal resources and impairs cognitive functions, including memory,
attention, and executive processing [51]. This depletion directly
impacts cognitive performance, weakening the ability to process
information, make decisions, and maintain focus on tasks [53].

Research consistently shows that even the mere presence of a
smartphone can diminish task performance [39, 86, 92, 95, 102]. This
raises a question: If the presence of a smartphone reduces cognitive
performance, could visually diminishing its presence via AR mitigate
this cognitive impairment?

AR has emerged as a transformative technology with signifi-
cant implications for managing cognitive load, aligning well with
Cognitive Load Theory (CLT) [89]. CLT explains how the human
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brain processes information and posits that short-term memory
has a limited capacity, capable of processing only a certain amount
of information at once. By strategically presenting information
and enhancing user environments, AR has shown the potential to
reduce cognitive load, improving learning, decision-making, and
user experience across various domains [13, 14, 38]. This versatility
is evident in applications ranging from education and therapy to
consumer behavior, thereby enriching cognitive well-being and
user experiences [6, 25, 42, 85, 107, 109].

In contrast to AR’s traditional role in reducing cognitive load by
amplifying the environment to support user experience, our work
uses the concept of diminished reality (DR) to reduce the visual
salience of distracting elements, thereby directly targeting and min-
imizing extraneous cognitive load. This visual cancellation can be
particularly effective in environments where excess visual infor-
mation could lead to cognitive overload, distraction, or decreased
efficiency in task completion. Using theMicrosoft HoloLens 2 (HL2),
we implement two interventions for reducing the visual salience
of a smartphone: visual camouflage and visual substitution (Fig.
1). The visual camouflage technique projects a customized cuboid
hologram over a smartphone to blend with the background, hiding
it from the user’s field of view (FOV). In contrast, visual substitution
covers the smartphone with a context-appropriate hologram in har-
mony with the environment. These techniques aim to reduce visual
distractions, much like noise-canceling headphones that eliminate
auditory distractions.

By visually camouflaging or substituting distractions (e.g., smart-
phones) from the user’s FOV using AR holograms, we aim to miti-
gate the brain drain effect [102]. This approach is grounded in the
principle that visual clutter impairs perceptual clarity and increases
judgment errors, emphasizing the importance of strategies that
enhance focus in cluttered environments [5]. Moreover, empirical
investigations into the direct cognitive benefits of DR, particularly
in the context of mitigating smartphone-induced distractions, re-
main unexplored [65, 66]. This gap motivates our research ques-
tions: Do the holographic AR interventions (Fig. 1) lead to better
cognitive performance than a physically nearby phone, and do they
achieve similar performance levels as when the phone is physically
removed?

To address these questions, we investigate the cognitive effects of
visual camouflage and substitution through a series of standardized
tasks: Operation Span (OSPAN) [98], Raven’s Standard Progressive
Matrices (RSPM) [74], and the Go/No-Go (GNG) [8]. These tasks
are selected based on their proven effectiveness in measuring cog-
nitive capacity and sustained attention [102]. We find that our AR
interventions significantly improve cognitive performance to levels
comparable to those when the smartphone is physically removed.

Using the HL2, our work blends AR’s augmentation capabili-
ties with DR’s focus on reducing visual clutter. We present the
HCI community with design strategies that cater to streamlining
user environments for cognitive benefits. Through several design
iterations, we provide detailed guidelines that AR developers can
immediately apply to enhance cognitive performance in everyday
working environments. While some prior work has explored meth-
ods to eliminate distractions [20, 27, 52, 65, 66, 96], to the best
of our knowledge, this is the first paper to streamline the design
space of AR holograms specifically for distraction reduction and to

demonstrate significant empirical cognitive benefits from visually
canceling ubiquitous devices like smartphones in an optical see-
through head-mounted (OST-HMD) AR setting. While our study
focuses on smartphones due to their omnipresence, the method is
adaptable to any distracting objects.

2 Related Work
This section provides an overview of the relevant research in three
domains: the cognitive effects of smartphone presence, the use of
AR to improve cognitive well-being, and the role of DR on cognitive
well-being.

2.1 Exploring the Cognitive Hazards of
Smartphone Presence

There is consistent research that reveals the adverse cognitive side
effects of smartphones. Initial investigations reported the poten-
tial distraction of smartphones, noting significant declines in task
performance due to their mere presence [95]. Subsequent studies
expanded this narrative, demonstrating how the proximity of smart-
phones could impair working memory and attention, regardless of
their power conditions [86, 102]. The concept of smartphone vigi-
lance, where the visibility of smartphone notifications hinders our
ability to focus on other tasks, further explains how visible smart-
phones compromise our concentration [39]. Moreover, connections
were made between intensive smartphone usage and broader issues
such as declines in academic performance, self-control deficits, and
adverse mental health outcomes, including depression and anxiety
[24, 30, 45, 88, 101]. Excessive smartphone engagement has been
linked to a higher incidence of cognitive failures, highlighting the
devices’ capacity to monopolize cognitive resources and degrade
cognitive performance [33, 86]. This body of evidence collectively
paints a concerning picture of the cognitive hazards posed by smart-
phones, emphasizing the importance of addressing this issue in our
digitalized society [92].

In response, our study introduces a targeted approach to alleviate
the cognitive costs associated with the presence of smartphones.
We propose using AR to visually diminish the presence of smart-
phones, showcasing how AR can be a practical tool to mitigate
daily distractions.

2.2 Augmented Reality (AR) for Cognitive
Well-being

AR plays a significant role in cognitive load management, closely
aligning with Cognitive Load Theory (CLT), which categorizes cog-
nitive load into intrinsic, extraneous, and germane [89]. Intrinsic
load refers to the inherent complexity of the task at hand, the ex-
traneous load is associated with how information is presented, and
germane load involves the mental effort required to integrate new
knowledge into existing frameworks. AR enhances cognitive perfor-
mance by amplifying the real-world environment with additional
virtual objects, which can reduce extraneous load and support ger-
mane load by providing contextually relevant information that aids
in education [42, 94, 99, 107, 109]. Beyond educational contexts,
AR reduces cognitive dissonance, enhancing purchase intentions
in consumer behavior [6], and extends to health and well-being
by supporting psychiatric training [21], stroke rehabilitation [25],

2
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and driving safety for the elderly [81]. Even popular AR games like
Pokémon GO have demonstrated cognitive and social benefits [78],
while AR pets provide a form of companionship for older adults
[22]. These findings underscore AR’s potential to enhance learn-
ing, user experience, and well-being through contextually relevant
virtual overlays.

In contrast to AR’s role in reducing cognitive load by amplifying
the environment to support user experience, our work uses dimin-
ished reality techniques to reduce distracting elements, thereby
directly reducing extraneous cognitive load. This approach is es-
pecially beneficial in settings where excessive visual information
might cause cognitive overload or hinder task efficiency.

2.3 Diminished Reality (DR) for Cognitive
Well-being

DR, like AR, involves visual manipulation of the world, but its focus
is fundamentally different. While AR overlays additional virtual
elements to enhance interaction and creativity, DR concentrates on
diminishing or removing specific elements to simplify perception
and reduce distractions, emphasizing the minimization of visual
saliency rather than augmentation [35, 59, 63]. By visually removing
or occluding non-essential elements, DR helps users focus on the
most relevant aspects of their environment [20]. This approach
offers distinct advantages over physically removing omnipresent
distractions like smartphones. By diminishing the device’s visual
salience, DR reduces extraneous cognitive load (the mental effort
spent on irrelevant information) while still allowing user access.
This balance maintains situational control, avoiding the anxiety or
inconvenience associated with prolonged complete removal [34].
Several studies have also examined DR’s role in stress and workload
management [18, 65], skill training [66, 79], product design [73, 84],
privacy [90], interaction quality [100, 106], and user experience in
hand-held AR settings [44, 48].

Despite these advances, current research lacks empirical evi-
dence on how DR improves cognitive performance by visually
eliminating distractions like smartphones. Unlike prior work that
addresses broad applications, our study aims to mitigate the cog-
nitive decline linked to smartphone presence and uses DR in a
holographic AR setup to either visually camouflage or substitute
smartphones.

3 System Design & Implementation
We illustrate the mechanics of our approach, focusing on how we
achieve visual cancellation of distractions and the design consider-
ations for delivering optimal AR experience. We also narrate our
investigation through various methods before arriving at the most
effective approach for our study. This process was essential in shap-
ing the final design and execution of our experiment, helping us
identify the potential and constraints associated with each explored
method.

3.1 Visual (Noise) Cancellation
We aim to address two main design goals. First, we want to cancel
out visual distractions like how noise-canceling headphones reduce
auditory distractions. Second, we seek to develop AR holograms
that seamlessly integrate into the environment without becoming

distractions themselves. This leads to two techniques: Visual Cam-
ouflage and Visual Substitution (Fig. 1). Although our current study
focuses on diminishing the visual salience of smartphones, this
method is generalizable and can be applied to other distracting
objects as well.

3.1.1 Visual Camouflage. Similar to how noise cancellation cre-
ates an anti-noise wave, visual camouflage uses a hologram that
matches the shape and size of the distracting object but alters its
visual features, such as color and texture, to blend with the back-
ground, reducing the object’s visual salience. Specifically, we project
a cuboid hologram, customized to replicate the background’s visual
features, slightly larger than the smartphone to ensure complete
coverage. We capture an image of the empty workspace and extract
its features to achieve this. When the smartphone is placed in the
workspace, we overlay it with a customized hologram that matches
the pre-captured background.

3.1.2 Visual Substitution. Rather than camouflaging the smart-
phone to blend with the background, visual substitution occludes
the object of interest (i.e., smartphone) with a contextually appro-
priate hologram that harmonizes with the environment, such as a
book on a desk. Here, we not only block the immediate view of the
smartphone but also introduce study-related objects, like books,
creating an environment that potentially promotes focus by repur-
posing the distraction. Therefore, while visual camouflage creates
a distraction-free zone, visual substitution modifies the distraction
and repurposes the space to enhance focus or task relevance.

3.2 AR Systems vs. VR Systems
To closely evaluate cognitive performance in environments mirror-
ing real-world scenarios, we designed our experimental setup to
emulate typical desk-based tasks. Such an approach demanded real-
time technology that could blend digital elements with the physical
world, retaining an authentic connection to the user’s immediate
environment. AR displays emerged as the prime choice, influenced
by several technical and experiential factors over VR settings.

Optical see-through head-mounted displays (OST-HMDs) or AR
HMDs allow virtual elements (i.e., holograms) to be overlaid di-
rectly onto a user’s view of the real world. On the other hand,
video passthrough (VPT) HMDs or VR HMDs recreate a user’s
environment within the virtual space. Though this VPT approach
addresses challenges related to occlusion and the limited FOV of
OST-HMDs, they are not devoid of limitations. These VR HMDs
have been associated with introducing real-scene distortions and
unstable visual experiences [2, 87]. Additionally, their resolution
often lacks the clarity and detail of the real world, as they project
surroundings onto a pixelated screen, creating a disconnect from
reality. VR HMDs often suffer from system latency, causing tem-
poral inconsistencies between the user’s actions and the system’s
responses [7]. This mismatch can disrupt cognitive tasks and affect
the validity of experiments.

In contrast, AR’s direct see-through of the environment mini-
mizes latency issues since it avoids the need for a virtual rendering
of the real world [67]. This provides a more consistent user experi-
ence, enabling a more accurate assessment of cognitive functions
by resembling normal glasses that offer a clear, high-fidelity view

3
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of the real environment [37]. While VR’s immersive capabilities are
promising, its inherent trade-offs made AR systems more fitting
for our study. AR’s ability to combine virtual interventions with
the real world without significant discrepancies ensures that par-
ticipants’ cognitive functions are assessed with fewer confounding
variables.

3.3 Hologram Design Space
The effectiveness of our AR interventions is closely tied to the
technical capabilities of the Microsoft HoloLens 2 (HL2), an optical
see-through device [37]. To achieve an optimal visual cancellation
of a phone via AR, careful hologram design is essential. To better
understand the design space, we conducted a design exploration
with 5 participants, including 2 members of the research team. The
primary objective was to understand how to design an AR hologram
that minimizes the visual saliency of the phone while considering
the constraints of the HL2 device. Participants interacted with the
system to evaluate the hologram design, including color, texture,
size, dimension, quantity, and animation. These interactions offered
valuable insights, which informed our design decisions and are
detailed in the following sections.

Figure 2: In the left image, a gradient of orange shades from
dark to bright demonstrates the impact of color on visibil-
ity, with brighter hues providing better concealment. The
right image showcases a similar gradient in grayscale, where
brighter whites more effectively obscure the underlying ob-
ject compared to darker shades.

3.3.1 Color. In holographic displays, the augmentation of the real
world involves adding light, which results in darker or black colors
appearing more transparent than brighter or white colors [29]. To
evaluate color renderings on the HL2, we projected a spectrum of
holograms on a smartphone: from bright orange to dark brown
and from bright white to dark grey (Fig. 2). Our findings show that
darker holograms are less effective for concealment due to their
increased transparency on AR displays, leading to a preference for
brighter hologram colors for optimal visual cancellation.

We further tested the color rendering against contrasting back-
grounds (Fig. 3b and Fig. 3c). We found that brighter holograms
were rendered more efficiently against a darker background. This
phenomenon can be attributed to the principle of visual contrast
[10], where the juxtaposition of a bright element against a dark
backdrop accentuates the former. However, one would choose a
hologram color analogous to the background for optimal blending.

Since the HL2’s additive display rendered darker colors translu-
cent, we limited our choice to a pair of bright holograms with a
bright background. Specifically, we use a simple white desk mat to
fine-tune the hologram’s color to blend with this white background.

(a) (b) (c) (d)

Figure 3: (a) shows a white hologram with a white surface,
effectively concealing the phone. (b) shows a dark hologram
on a white surface, where the phone remains translucent.
(c) shows a white hologram on a dark surface, where the
hologram becomes prominent. (d) shows a dark hologram
on a dark surface, where translucency reveals the phone,
demonstrating the limited effectiveness of darker holograms
for concealment.

3.3.2 Texture. The fidelity of a hologram depends on its texture.
Shadows, patterns, and detailed nuances are crucial for making a
hologram appear realistic [70]. We use the 3D Builder application
to apply 2D images onto 3D models, creating environment-specific
textures. However, reflective surfaces and intricate patterns, like
wood grain, can reduce a hologram’s fidelity if the reconstruction
does not match the background accurately (Fig. 4d). Hence, a simple,
non-reflective, plain white background is preferred. This neutral
choice simplifies replication and reduces discrepancies between the
hologram and its environment, optimizing the overall realism and
efficacy of the AR experience.

(a) (b) (c) (d)

Figure 4: (a) shows awood grain surface. (b) depicts the cuboid
hologram during the inpainting process with the wood grain
texture applied. (c) displays a smartphone placed on thewood
surface. (d) shows the smartphone covered by a hologram
with thewood texture, highlighting the importance of precise
texture alignment to avoid the unnatural appearance caused
by mismatched patterns.

3.3.3 Size. Accurate hologram sizing is crucial for effective visual
interventions. The hologram’s dimensions must mirror or exceed
the phone’s, as seen from the viewer’s perspective. This ensures
the phone is entirely obscured from the visual field. For visual sub-
stitution, the book hologram must cover the phone and fit naturally
within the environment. If the hologram matches the phone’s di-
mensions too closely, it may appear unnatural, as books typically
differ in size from smartphones. Conversely, if the book hologram
is too large, it disrupts the realism of the scene (Fig. 5a). This effect
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relates to the "Big Baby" effect [1], where disproportionate scaling
distorts the perception of natural size relationships. While the "Big
Baby" effect originally describes distortions in human represen-
tation, a similar principle applies here. A book hologram that is
either too large or too small relative to its surroundings appears
unnatural, reducing immersion and perceptual realism. While it
is crucial for the hologram to cover the device, its size should not
distort the natural environment of the workspace.

3.3.4 Dimension. Inadequate dimensionality can also reduce the
effectiveness of visual canceling techniques (Fig. 5b). Specifically,
the human cognitive system could display a level of skepticism
towards the holographic overlay if it lacks the depth cues that the
human eye is accustomed to [26]. For instance, a 2D hologram,
such as a virtual piece of paper, would appear to hover above the
smartphone rather than fully conceal it, undermining the intended
effect. This observation underscores the importance of prioritizing
3D designs for real-world objects that are typically 3D [57], ensuring
that AR holograms integrate seamlessly with the environment and
effectively achieve the desired cancellation.

(b) Inadequate 2D Hologram (c) Clutter of Multiple Holograms(a) Exaggerated Hologram Size

Figure 5: (a) The book hologram has an exaggerated size
relative to the environment, disrupting the visual coherence
of the scene. (b) Despite the smartphone’s thinness, its three-
dimensionality is still apparent, making the 2D approach
ineffective. (c) Multiple holograms diverge focus, opting for
a single hologram scene.

3.3.5 Quantity. The number of holographic elements was con-
trolled to include only a single hologram (Fig. 5c). This decision
aligns with the concept of perceptual load, which refers to the
amount of visual information presented and is related to the lev-
els of clutter within a scene [76]. Prior research on visual clutter
suggests that excessive information in a scene can decrease recogni-
tion performance [76]. Therefore, increasing the number of objects
in a scene can raise cognitive load. By limiting the scene to just
one targeted hologram on the smartphone, we aimed to minimize
cognitive load and enhance the effectiveness of the visual canceling
technique.

3.3.6 Animation. We deliberately chose static holograms to mini-
mize the potential cognitive load associated withmoving holograms
for our study (Fig. 6). Previous research has shown that animations
often provide no advantages over still images [97]. In fact, accord-
ing to Mayer’s Cognitive Theory, animations can lead to increased
cognitive load by taxing cognitive resources with unnecessary mo-
tion that do not directly contribute to the task at hand [61]. By
using static holograms, we aimed to focus the user’s attention on
the essential elements of the scene without overloading their cog-
nitive capacity, thereby enhancing the effectiveness of the visual
cancellation. This approach ensures that the holograms serve their

intended purpose without introducing additional distractions or
cognitive strain.

Figure 6: Static dog hologram (left) is still, while dynamic
dog hologram (right) constantly barks with movements.

3.4 Hologram Placement & Sizing
In our exploration of automating the hologram placement process
on the smartphone, we investigated several methods for real-world
object detection. Ensuring the hologram is accurately and automat-
ically placed on the desired object requires real-time performance
and robust detection, regardless of the phone type. We discuss four
methods we considered, detailing their requirements and draw-
backs. Additionally, we address the management of hologram size
after placement to ensure optimal integration with the target object.

Microsoft Azure Object Anchors method requires converting
a 3D model to an object anchors model of the real-world object
generated through the Microsoft Azure Cloud’s conversion service.
The object anchors model serves as a tracking reference. Using
the conversion service, we aimed to detect real-world objects with
the object detection SDK in HL2. However, the conversion service
only supports more substantial objects, ranging from 1m to 10m,
becoming ineffective for smaller items like smartphones.

VisionLib’s Object Tracking method requires a 3D model of
the target object. Although the 3D model appeared floating upon
initiating the application, directing one’s gaze toward the actual
phone anchored the model to it. While successfully detecting and
overlaying holograms onto the smartphone, this method presented
usability challenges. Users had to expend effort to lock the 3D
model onto their smartphone. The phone’s slim dimension made
it challenging to detect due to its lack of distinct features, akin
to a near-2D object. Moreover, 2D tracking struggled because the
phone screen is reflective and lacks distinctive features for reliable
detection.

Vuforia Object Recognition demanded detailed prior knowledge
of the object’s dimensions and necessitated an Android device for
scanning via Vuforia’s app. Again, the thin dimensions of most
phones made it difficult to pinpoint the correct aspect ratio without
inducing system errors. Attempting to accommodate these variable
dimensions during experiments could lead to unintended delays,
potentially skewing the user experience.

Lastly, while ArUco markers are widely used for their robustness
as placeholders [36], their application within our study was deemed
intrusive. In the context of our study, placing an ArUco marker on a
desk or attaching it to a user’s phone presents certain disadvantages.
Firstly, putting a QR code on a workspace or personal device is
uncommon, detracting from the typical environment we aimed to
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replicate. Moreover, the repetitive task of attaching and detaching
markers on different users’ phones can interrupt the flow of the
experiment. Relying solely on the capabilities of the HL2, without
any external aids like ArUco markers, was essential to maintaining
a natural setting.

We used a hands-on approach to hologram management (i.e.,
manual placement and sizing) to provide the most robust AR expe-
rience. Given the varying sizes of smartphones (e.g., brand, model,
and phone cases), a real-time adjustment of the hologram’s size was
also essential. We first import the hologram from a 3D library in
HL2, followed by a grab gesture to position it over the participant’s
phone. The hologram was placed to cover the phone completely,
eliminating any hovering effect. After the placement, we used a
pinch gesture to match the participant’s phone dimensions. This
led to the most realistic user experience by allowing control over
the hologram’s placement and dimensions without requiring extra-
neous tools [36].

4 Methods
The study was approved by the University’s Institutional Review
Board, and all participants provided informed consent. Addition-
ally, the study was pre-registered on the Open Science Framework
(OSF)1, where all data is openly available2.

4.1 Participants
60 participants (aged 20-35 years; 11 female, 49 male) were recruited
for our in-person experiment. The majority were Computer Science
majors (46), with others from Engineering (5), Business (3), and
other academic disciplines (6). Most were East Asian (41), with di-
verse ethnic backgrounds including Indian (9), Punjabi (2), Central
Asian (1), South Asian (1), Hispanic or Latino (1), Middle Eastern or
North African (2), Whites (2), and one who chose not to specify their
ethnicity. Regarding AR/VR experience, 26 were first-time users, 26
had limited experience, 7 had moderate experience, and 1 partici-
pant had extensive experience. The sample size was guided by CHI
local standards and relevant prior studies [15, 20, 52]. To be eligible,
participants were required to have normal or corrected-to-normal
vision and be free of neurological disorders (e.g., migraine and
chronic fatigue). Each participant received financial compensation
of $15.

4.2 Experimental Setup
To ensure a consistent user experience during laptop tasks, we
provide guidelines to emulate a natural environment. The room’s
lighting was set to the lowest of three available brightness levels to
enhance hologram fidelity by reducing ambient light interference.
We installed curtains to prevent external light intrusion, ensuring
a consistent visual environment and avoiding potential disruptions
in the AR’s occlusion capability. A white desk mat was placed
on the table to serve as a uniform background for the holograms,
particularly for the aspect of visual camouflage (Fig. 7).

Given the limited FOV of HL2 (i.e., 52 degrees), precise position-
ing of elements was critical [11]. When the participant is seated, the

1https://osf.io/7gx64
2https://osf.io/8fy43/

Figure 7: Participants sit with a laptop and smartphone po-
sitioned to account for the HL2’s limited FOV. This setup
ensures the phone stays visible to the participant and the AR
system, allowing consistent holographic coverage.

smartphone must be close to the laptop and within the user’s im-
mediate FOV (Fig. 7). This ensures the visual cancellation remains
consistent and fully covers the smartphone, even during minor head
movements. During the pre-check phase prior to the main study,
we observed that extensive seat movement by participants could
cause the hologram to fall outside their field of view. This precheck,
which mirrored the procedure of the main study, served as an ad-
ditional quality assurance step to identify and address potential
issues for robustness. Addressing this was essential, as it would
otherwise defeat the purpose of occlusion by making the smart-
phone visible. To counteract this, the seating was pre-arranged. A
stationary chair, devoid of wheels, was chosen to minimize inadver-
tent shifts. The chair was equipped with ergonomic back support
to encourage a stable posture, reducing the likelihood of significant
head movements.

To ensure consistency across participants and maintain control
over the experimental conditions, we instructed all participants
to turn their phones off during the experiment. This decision was
guided by prior research [86, 102], which found that phone power
condition (on vs. off) does not influence cognitive performance.
Turning off the phones further minimized unexpected external con-
founders, such as notification variability from individual usage, app
settings, and device behaviors, ensuring our focus remained solely
on the effects of minimizing visual salience. While an alternative
approach is to provide experimenter-controlled phones to manage
notifications, we prioritized ecological validity by allowing partici-
pants to use their own devices. This decision reflects the reality that
participants are more connected to and familiar with their phones
compared to unfamiliar, experimenter-provided devices [50].

4.3 Conditions
Our study uses a between-subjects design with participants ran-
domly assigned to the following conditions:

• C1 Physically Nearby, where the phone is stationed on the
desk.

• C2 Physically Removed, where the phone is relocated out-
side the room.

• C3 Visually Camouflaged, where the phone is disguised
with a 3D hologram of the same background features.
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• C4 Visually Substituted, where the phone is occluded with
a hologram representing a stack of books.

The selection of these conditions was informed by existing re-
search and aims to deepen our understanding of cognitive impacts
related to smartphone presence. Specifically, conditions C1 and
C2 derive from the brain drain study, demonstrating various sce-
narios of smartphone proximity can significantly influence cogni-
tive capacity [102]. We chose the ‘Physically Removed’ condition
over alternatives like placing the phone in a bag as this condition
demonstrated the largest effect from prior work [102]. Conditions
C3 and C4 incorporate DR-influenced interventions, motivated by
research indicating the potential for transparency and context rele-
vance to reduce distractions, albeit without significant empirical
evidence in holographic AR display settings [20]. Additionally, prior
work suggests that visual changes to the environment may improve
concentration and subjective evaluations [20]. Inspired by these
insights, we hypothesize that the visually camouflaged and substi-
tuted phone with ARwill enhance cognitive performance compared
to a physically nearby phone and achieve similar performance to a
physically removed phone.

To address concerns of anxiety from smartphone separation
when physically removed, as smartphones are often perceived as
an extension of oneself [93], our study was designed to minimize
such anxiety. During the recruitment and experiment, participants
were informed about the session’s length and their option to with-
draw, reducing potential stress. Literature supports that awareness
of separation duration and control over the situation can reduce
stress [91]. Additionally, studies confirm that temporary separation
from smartphones does not intensify anxiety or harm well-being,
suggesting minimal anxiety impact from phone removal in our
study [12, 104].

4.4 Tasks
The Operation Span (OSPAN) task, which involves math problems
and memory sequences, and the Raven’s Standard Progressive Ma-
trices (RSPM) task, which focuses on pattern completion, assess
cognitive capacity. The Go/No-Go (GNG) task evaluates sustained
attention through response to visual cues, differentiating from cog-
nitive capacity measures.

4.4.1 Operation Span (OSPAN). The OSPAN task evaluates an in-
dividual’s capability to retain information in working memory
while processing additional unrelated details [28]. Participants are
initially presented with a simple math problem. After solving, par-
ticipants press either the "C" key if the equation is correct or the "I"
key if the equation is incorrect. Immediately following, a random
letter is presented, which participants must remember. Each math
problem paired with a letter presentation forms a single trial. Trial
sets can contain between 3 and 7 trials. After each set, participants
recall the letters in the correct sequence. The focus is on both speed
and accuracy. In our study, participants undertook five random
trials: one for each trial set length (3, 4, 5, 6, and 7). The OSPAN
Score, with a maximum of 25, indicates an individual’s domain-
general attentional resources. It measures the participant’s ability
to process and store information simultaneously, thereby revealing
aspects of working memory. Participants with an accuracy below
85% on the math operations are excluded [98].

4.4.2 Raven’s Standard Progressive Matrices (RSPM). The RSPM
task measures a non-verbal component of general fluid intelligence
that characterizes an individual’s capacity to reason and tackle un-
familiar problems [74]. Participants are shown incomplete pattern
matrices and must determine the piece that completes the pattern.
Grouped in five 12-item sets (A-E) of escalating difficulty, partici-
pants solve ten items: D2, D4, D6, D8, D10, D12, E1, E2, E4, and E6.
The RSPM Score, with a max score of 10, is sensitive to the immedi-
ate availability of attentional resources due to the task’s escalating
difficulty. Thus, a high RSPM Score indicates robust attentional
control.

4.4.3 Go/No-Go (GNG). The GNG task measures sustained atten-
tion [69]. Participants respond to sequential "go" and "no go" targets
on a computer screen in this task. They press the spacebar for "go"
targets and abstain for "no go" targets. Each trial starts with an
800ms fixation point and a 500ms blank screen. A color-changing
rectangle cue follows. Participants press the space bar for the green
"go" cues and ignore blue "no go" cues, with each cue lasting up to
1000ms. A 700ms gap separates the 100 trials, which are equally
divided between "go" and "no go" targets. Metrics are omission
errors and reaction time that measure sustained attention without
the interference of working memory capacity [75]. Omission er-
rors track missed "go" responses, serving as a measure of sustained
attention. Reaction time measures the speed of responses to "go"
targets, indicating attention agility. To handle commission errors,
when participants incorrectly respond to "no go" cues, we calculate
the commission error rate by dividing the number of commission
errors by the total "no go" cues. Participants with rates outside 95%
confidence interval are excluded [58].

4.5 Post-Study Interview
After the tasks, participants completed a post-study interview using
the laptop in front of them. The experimenter remained outside the
room to avoid any influence or bias on participant responses. They
were asked to rate the visual salience of the phone in the presence
of the hologram on a 7-point Likert scale (Q1: "How visually salient
was the phone when the hologram was present?"). The distinctness
of the hologram was assessed similarly (Q2: "How noticeable was
the hologram?"). Subsequent questions asked the frequency of the
participants’ attentional shifts toward the hologram (Q3: "How often
did your attention shift to the hologram?"). Participant inclination
toward future adoption of the interventions in related scenarios
was then measured, reflecting the hologram’s practicality and user
acceptance (Q4: "How likely are you to use the holograms in similar
settings in the future?"). Finally, an open-ended question was given
about potential changes in the hologram design (Q5: "If you could
change the hologram to a different object, what would you change to
and why?").

4.6 Procedure
Each study session spanned an hour on average. Upon entering
the lab, conditions were assigned at random to each participant. In
addition to prior work reporting that phone power condition does
not affect cognitive performance [86, 102], and given the variety
of smartphone devices and settings among participants, we asked
participants to turn off their smartphones to eliminate any potential
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confounders beyond the mere presence of their phones. For the
physically removed condition, we asked participants to leave all
their belongings, including their smartphones, outside the room.
Then, participants signed a consent form and completed a pre-study
questionnaire. The questionnaire asked for general demographic
information and prior experience with AR devices. Simultaneously,
the examiner prepared the AR device and holograms for the experi-
ment.

To ensure consistency, all participants wore theHL2, even for par-
ticipants assigned to conditions without the interventions, thereby
eliminating the "sunglass effect" when the device was not worn. The
sunglass effect refers to the altered visual perception experienced
when not wearing the device, akin to the brightness change when
removing sunglasses. Once the participants wore the device, an
eye calibration process was initiated to ensure the accurate place-
ment of holograms in the participants’ FOV. Then, the participants
completed a randomized sequence of the three cognitive tasks to
prevent potential order effects. These tasks were conducted in isola-
tion, without the examiner in the same room, to minimize external
confounders, such as the examiner’s presence [108].

After all tasks, participants were interviewed to gather feedback
about the interactions with the hologram and the smartphone and
their overall experience of the study. Throughout the experiment,
the examiner monitored the user’s progress by viewing a live feed
of what the user saw through the HL2 device, which was streamed
to the examiner’s computer via the Windows Device Portal. Google
Remote Desktop facilitated the experiment remotely, allowing the
examiner to manage the session without entering the participant’s
room during the tasks.

4.7 Data Analysis
We used a multivariate analysis of variance (MANOVA) to eval-
uate the cognitive capacity effects of different phone conditions
on a combination of OSPAN and RSPM scores. To ensure the suit-
ability of parametric tests, we first checked the normality of each
cognitive capacity measure (i.e., OSPAN and RSPM) within each
condition using the Kolmogorov-Smirnov (KS) test. The results
confirmed that the data did not significantly deviate from normal-
ity (𝑝 > 0.05) for all groups. We also verified the homogeneity of
variance using Levene’s test for both OSPAN (𝑝 = 0.791) and RSPM
(𝑝 = 0.955), indicating equal variances across groups. The GNG
task was excluded from the MANOVA since it measures sustained
attention rather than cognitive capacity. This exclusion aligns with
prior work, which shows that sustained attention does not corre-
late with the cognitive capacities assessed by OSPAN and RSPM
[102]. For the GNG task, we assessed normality using the same
KS test, which revealed that the data did not meet the normality
assumption. As a result, we used the non-parametric Kruskal-Wallis
test to examine the effects of different phone conditions on two
behavioral measures of sustained attention: omission errors and
reaction time. Following theMANOVA, we conducted ANOVA tests
for each dependent variable (OSPAN and RSPM) to further examine
the impact of each phone condition on cognitive capacity. Finally,
Bonferroni post-hoc tests explored pairwise differences among the
four phone conditions. The p-value was adjusted by dividing the
conventional alpha level by the number of pairwise comparisons

made, excluding the comparison between conditions C3 (Visually
Camouflaged) and C4 (Visually Substituted) as predetermined. All
statistical analyses were pre-registered on the OSF, ensuring the
integrity of our experiment. No participants were excluded as none
met the exclusion criteria.

For the post-study interview, participants responded to four
closed-ended questions on a 7-point Likert scale and one open-
ended question regarding hologram design preferences. We calcu-
lated descriptive statistics, including the mean (𝜇) and standard
deviation (𝜎), to summarize participant perceptions of phone visi-
bility, hologram noticeability, attention shifts, and future adoption
likelihood. For the open-ended responses on alternative hologram
designs, we conducted a brief thematic analysis to identify key
patterns and user preferences. One member of the research team
conducted the initial review and coding of responses, and a second
member cross-checked and confirmed the identified themes. This
dual-review process ensured the accuracy and consistency of the
analysis. Through this approach, we identified key themes related
to functionality, aesthetic appeal, and emotional comfort.

5 Results
This section provides a comprehensive view of our study’s findings,
segregated into task performance and post-interview analysis. Task
performance results offer statistical measures of cognitive capacity
and sustained attention, while the survey data elucidated the user
experience and perceptions through analyses of the post-interview
responses.

5.1 Task Performance Analysis
We conducted several analyses to evaluate the effects of different
phone conditions on available cognitive capacity (see Fig. 8). Two
domain-general cognitive function metrics were used: the OSPAN
and RSPM scores. These metrics were chosen for their reliance
on limited-capacity attentional resources, thus serving as robust
indicators for fluctuations in cognitive capacity [102].

To assess the impact of different phone conditions on a com-
bination of the OSPAN and RSPM scores, we used a multivari-
ate analysis of variance (MANOVA). The Pillai’s Trace statistic
revealed a significant effect of different conditions on cognitive
capacity (𝐹 (6, 112) = 4.1948, 𝑝 = .0008). Subsequent univariate
ANOVAs were conducted for each dependent variable. For the
OSPAN task, the ANOVA revealed a significant main effect of
the conditions (𝐹 (3, 56) = 6.548, 𝑝 = .0007, 𝜂2 = 0.259). Simi-
larly, the conditions had a significant main effect on RSPM scores
(𝐹 (3, 56) = 3.868, 𝑝 = .0138, 𝜂2 = 0.172). Bonferroni post-hoc tests
were further conducted to investigate pairwise differences among
the four conditions: Physically Nearby (C1), Physically Removed
(C2), Visually Camouflaged (C3), and Visually Substituted (C4). C1
was set as the baseline. For the OSPAN task, significant differences
were observed (Fig. 8). Specifically, comparing C1 to C2, C1 to C3,
and C1 to C4 showed significant differences, with 𝑝-values of 0.0022,
0.0415, and 0.0188, respectively. The RSPM task reflected a similar
trend, showing a significance between C1 and C2 (𝑝 = 0.0259) and
marginally significant when comparing C1 with C3 (𝑝 = 0.0688)
and C4 (𝑝 = 0.0909). No significant differences were observed when
comparing C2 with C3 and C4 for either task.
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Figure 8: Scores for two cognitive capacity tasks (OSPAN and RSPM) across four conditions. The scores for C2, C3, and C4
are significantly different from C1. Additionally, the scores for C3 and C4 do not significantly differ from C2, indicating that
visually canceling the phone via AR achieves similar cognitive benefits as physically removing the phone. † is marginally
significant (𝑝 < 0.1), * is significant (𝑝 < 0.05), and ** is highly significant (𝑝 < 0.01).

For the GNG task, we analyzed the effects of smartphone salience
on two behavioral measures of sustained attention: omission errors
and reaction time. Since the GNG data did not pass the normality
test, we used the non-parametric Kruskal-Wallis test, which yielded
no statistically significant effects of different conditions on either
of these measures.

5.2 Post-Interview Analysis
This section offers insights into the visual saliency of smartphones
and holograms, shifts in attention, and perspectives on future adop-
tion and alternative designs (see Fig. 9).

5.2.1 Visual Saliency of Smartphones. The average and standard
deviation of participant responses on a 7-point Likert scale for
smartphone saliency are as follows: visually camouflaged condi-
tion (𝜇 = 2.37, 𝜎 = 1.40), visually substituted condition (𝜇 = 2.60,
𝜎 = 1.20), and combined results across both conditions (𝜇 = 2.48,
𝜎 = 1.31). The distribution of responses was skewed toward the
phone being perceived as ’not salient’ (Fig. 9). A majority of the
participants reported that the phone was either completely invis-
ible or nearly so when the hologram was in place. P12 and P16
mentioned "Could not see the phone" and "Phone was not visible at
all, respectively." P14 and P24 also indicated that the phone was
visible only under certain conditions, such as "when moving their
head" or "focusing really closely at it," respectively.

5.2.2 Noticeability of Holograms. The average and standard devia-
tion of participant responses on a 7-point Likert scale for the notice-
ability of the hologram are as follows: visually camouflaged condi-
tion (𝜇 = 5.73, 𝜎 = 1.26), visually substituted condition (𝜇 = 6.03,

𝜎 = 0.80), and combined results across both conditions (𝜇 = 5.88,
𝜎 = 1.07). The central sentiment was that the hologram was evi-
dent, often described as "bright" or possessing a "distinct glow." This
characteristic allowed it to "stand out" even when participants were
focused on other tasks, with phrases like "always in my field of view"
being recurrent. P21 also mentioned how they "could constantly see
it, but not too significant later on," indicating a habituation effect,
wherein the initial allure of the hologram wore off over time. Simi-
larly, factors like the viewing angle and lighting were mentioned
by P9 and P51 as elements that could modulate the hologram’s
visibility.

5.2.3 Attention Shifts to Holograms. The average and standard de-
viation of participant responses on a 7-point Likert scale for atten-
tion shifts are as follows: visually camouflaged condition (𝜇 = 4.00,
𝜎 = 1.32), visually substituted condition (𝜇 = 3.80, 𝜎 = 0.91), and
combined results across both conditions (𝜇 = 3.90, 𝜎 = 1.14). The
remarks highlighted a nuanced interplay between the hologram’s
visual salience and the participant’s engagement with their primary
tasks. P37 noted, "Curious to see if the hologram will interact dur-
ing the study that may lead to distraction," highlighting potential
curiosity-induced attention shifts. On the other hand, P3 stated, "I
wouldn’t be affected by it, but it seems like it can form some kind
of an atmosphere that may help focus," indicating the hologram’s
potential to create a conducive task environment. Several partic-
ipants (P18, P24, P30) referred to the brightness of the hologram,
with one saying, "It was always noticeable but not distracting." The
tendency for the hologram’s influence to wane over time was also
noted, with P37 remarking, "At the start, it was hard to ignore, but
it became more mundane as time went on." Despite the hologram’s

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Lee and Kim

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

         Visually 
Camouflaged

         Visually 
Camouflaged

         Visually 
   Substituted

        Visually 
  Substituted

Figure 9: Participant responses on a 7-point Likert scale, comparing the two visual interventions. Overall, participants found
the phone less visible when the hologram was present. The hologram was noticeable for both conditions, but the frequency of
attention shifts was fairly even. The likelihood of using the holographic feature is favorable.

visibility, P38 observed, "My focus remained steadfast, with only rare
diversions towards the hologram." Overall, the feedback revealed
that although the hologram was often perceptually noticeable, its
impact on the primary task varied and often diminished over time.

5.2.4 Future Adoption of Holograms. The average and standard de-
viation of participant responses on a 7-point Likert scale for future
adoption are as follows: visually camouflaged condition (𝜇 = 5.27,
𝜎 = 1.21), visually substituted condition (𝜇 = 5.53, 𝜎 = 1.23), and
combined results across both conditions (𝜇 = 5.40, 𝜎 = 1.23). One of
the primary motivators for using the feature is its ability to reduce
distractions, particularly from smartphones. Respondents (P14, P26,
P27) mention how the hologram helped them focus on tasks by
obscuring their phones. Several participants (P8, P13, P24) noted
that studying and working are primary use cases. For instance,
P7 said, "For studying as it helps me decrease distraction when the
hologram fully covers my phone," indicating an interest in leveraging
the intervention to reduce the interference of smartphones during
study sessions. The use of holographic features in a work envi-
ronment was also highlighted. Comments (P9, P17) like "for work
to improve efficiency" and "when I am writing my research articles
because I get distracted from my phone or other objects" suggest that
professionals could use the intervention to enhance focus. The tech-
nology is seen as beneficial in a co-working setting for maintaining
individual concentration, as P44 mentioned using it "in a shared
workspace, to maintain a sense of individual space and concentration."
The holographic technology was also viewed as potentially helpful
in creating a private ambiance in public transport and open spaces.
P39 also mentioned, "In public transport, to create a more private
ambiance by obscuring the crowd," suggesting a desire for increased
personal space. Interestingly, P19 noted that using AR to visually
hide the phone "helped me not to be tempted to look or interact with
it while the anxiety of not having it around was at a minimum." This

indicates that our interventions not only offer a way to manage
distractions but also alleviate the anxiety linked to smartphone
separations [19, 34, 68, 82, 93].

5.2.5 Alternative Designs of Holograms. The feedback on alterna-
tive objects for holograms suggests a range of preferences based on
functionality, aesthetic value, emotional comfort, and individual cir-
cumstances. For example, P18 noted the utility of task management
by suggesting a "separate display surface to view quick-access infor-
mation like appointments or to-do lists." This statement illustrates
the need for functional objects that serve as extensions of the user’s
productivity ecosystem. Additionally, addressing unique scenar-
ios or needs, P55 recommended a "clear holographic calendar with
all my exam dates and deadlines," which not only adds functional
value but also addresses a very particular need, thereby suggesting
that specialized holographic features could benefit users in unique
situations. Emotional and psychological comfort also played a sig-
nificant role. P7 said they would prefer "cute pets like cats" because
they are "allergic to cat’s hair, but if it would be an AR cat that could
interact with me, I would be able to feel more relaxed." This statement
showcases how holograms could provide emotional sustenance,
filling in gaps where real-world objects or conditions may be in-
sufficient or harmful. P37 proposed an "animated aquarium with
fish swimming around," which they believe would be calming. This
indicates that aesthetic pleasure can be beneficial even in a focused
work environment.

6 Discussion
This study explored the cognitive effects of smartphone presence
and assessed the potential of AR to mitigate these effects. Consis-
tent with prior findings, our results confirm that the mere presence
of a smartphone can hinder cognitive performance, as indicated
by reduced cognitive task performance when the smartphone was
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physically nearby compared to when it was removed [102]. More
critically, our results demonstrate that holographic AR interven-
tions (visual camouflage and visual substitution) can counter these
cognitive drawbacks. By visually canceling the smartphone, akin
to auditory noise cancellation but for visual distractions, our inter-
ventions resulted in cognitive enhancement, similar to the benefits
of physically removing the phone, as evidenced by the cognitive
task performance results. Specifically, our study results reveal that
smartphone presence impairs cognitive capacity, as reflected in
OSPAN and RSPM scores, but does not affect sustained attention,
measured by omission errors and reaction time in the GNG task.
This result aligns with prior work, showing that even when indi-
viduals successfully maintain sustained attention by resisting the
urge to check their phones, the mere presence of these devices can
still diminish cognitive capacity [102].

6.1 Effectiveness of AR as a Visual (Noise)
Cancellation Device

The success of AR interventions lies in their ability to reduce the
salience of the smartphone, which would otherwise compete for
attentional resources. Smartphones are high-priority stimuli due to
their personal relevance and chronic salience, akin to hearing one’s
name or a baby’s cry, which automatically capture attention [77, 83].
The visual cancellation provided by AR effectively diminishes this
salience, reducing the "gravitational pull" the smartphone exerts on
attention and freeing cognitive resources for task-related processes.
This aligns with theories of limited-capacity attentional systems,
which emphasize that occupying cognitive resources to inhibit
irrelevant but salient stimuli impairs performance on other tasks
[41, 54].

Moreover, participants reported a habituation effect to the holo-
grams, indicating that while the overlays were initially noticeable,
they did not persistently draw attention. Qualitative feedback sug-
gests that participants did not "forget" the smartphone but rather
perceived it as "completely invisible" or "non-salient" during the AR
interventions. This reflects the power of the interventions to mod-
ulate the environment in ways that reduce the smartphone’s cog-
nitive impact. Unlike conscious suppression of distraction, which
requires active cognitive effort [72], the holographic overlays likely
offloaded the cognitive burden associated with suppressing atten-
tion to the smartphone. This contrasts with static interventions,
such as covering the phone with a piece of paper, which may re-
main conspicuous due to their incongruence with the surrounding
environment.

AR dynamically adapts to the context, visually blending with
the environment in ways static solutions cannot achieve. Our study
highlights two complementary mechanisms that drive the cogni-
tive benefits of AR-based distraction mitigation: salience reduction
and attentional guidance. Salience reduction occurs when AR in-
terventions diminish the perceptual distinctiveness of distracting
objects, such as smartphones, thereby reducing their ability to au-
tomatically capture attention. This mechanism is most evident in
the visual camouflage condition, where the phone is blended into
the background, eliminating visual competition. Attentional guid-
ance, on the other hand, is achieved through visual substitution,
where holograms (e.g., a holographic book) not only obscure the

distracting object but also act as contextual cues to focus users
on task-relevant information. Unlike passive solutions like cov-
ering the phone with an object, AR dynamically blends with the
environment and maintains perceptual consistency.

These dual mechanisms align with theories of attentional priori-
tization, which emphasize the interplay between stimulus salience
and goal relevance in guiding attention [23]. By reducing the salience
of irrelevant stimuli (visual camouflage) and reinforcing goal-relevant
anchors (visual substitution), AR achieves robust cognitive benefits.
This dual approach ensures that users experience reduced atten-
tional competition from irrelevant stimuli while also benefiting
from perceptual guidance toward task-relevant information. Collec-
tively, this synergy of salience reduction and attentional guidance
surpasses the capabilities of simpler static interventions, offering a
comprehensive strategy for distraction mitigation.

6.2 Practical Implications & Potential Use Case
It is important to clarify that our solution is not limited to smart-
phones. We chose smartphones as an example of a common dis-
traction, as they are omnipresent. However, our proposed method
can be generalized to various situations. For instance, it can help
improve focus and concentration by visually diminishing clutter
in a room or minimize distractions in an open office environment
by obscuring irrelevant visual stimuli. This adaptability is a crucial
aspect of our solution. While a smartphone can be physically re-
moved by its owner, physically removing other objects or people
requires consent and effort, which may not always be possible. Ad-
ditionally, physically removing smartphones from immediate reach
isn’t always viable or desirable due to the fear of missing out, which
escalates with prolonged separation. Our intervention surpasses
these limitations as it only visually diminishes distractions from
the user’s FOV.

One compelling application can be related to addressing preva-
lent issues such as glossophobia or stage fright [43]. The first step of
the application involves techniques to visually cancel out elements
within the audience that may cause stress or anxiety for the speaker.
This could include faces exhibiting judgmental expressions or other
distracting visual cues. After establishing this holographic visual
dominance, the reduced or minimized elements can be replaced
withmore comforting visuals using visual substitution. For example,
speakers equipped with the AR HMD could then see these visually
diminished areas transformed into faces of friends or family [3],
manipulated with filters [56], or replaced with calming landscapes
[71]. Alternatively, the audience could be transformed into non-
judgmental figures, further diminishing the stress associated with
the perception of judgment [108]. This combined approach may be
promising for refining visual effects and could set a new direction
for developing holographic display technology.

Another promising direction involves introducing user-customizable
experiences, a feature whose importance has been well-established
in prior research [46, 60, 105]. This would allow users to personally
select their desired overlays for distracting objects. For example,
P7’s preference for a hologram of "cute pets like cats" due to an
allergy to cat hair exemplifies how such customization could fulfill
emotional needs in cases where real-world options are impractical.
Future work could explore using holograms as emotional support
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tools, especially where real-life alternatives are impractical or harm-
ful. This approach would blend visual camouflage and substitution
techniques not just to reduce distractions but also to enhance user
well-being. The initial stage would involve visual camouflage to ef-
fectively reduce the smartphone’s visibility. After establishing this
visual dominance, a context-appropriate object could be overlaid
using visual substitution. This personalization could be enhanced
by machine learning, predicting and suggesting holographic over-
lays based on users’ historical behavior and preferences [17]. Such
predictive analytics aims to generate holographic overlays that
resonate with the user’s inclinations and induce states of cognitive
focus or relaxation as required. By adapting to each user’s unique
preferences, we believe this personalized approach would elevate
the practicality of our system.

6.3 Applicability to Spatial AR and Societal XR
& Ethical Considerations

Our proposed AR interventions, designed to visually diminish dis-
tractions, offer potential for integration into extended reality (XR)
paradigms that do not require HMDs. Specifically, the principles
behind our methods can extend to Spatial Augmented Reality (SAR)
and Societal XR frameworks [9, 32]. SAR utilizes environmental
technologies like projectors to overlay virtual elements onto phys-
ical spaces, eliminating the need for users to wear technology
[40, 55]. Our approach aligns with SAR by projecting contextu-
ally relevant imagery or occlusions to visually conceal distracting
objects. While SAR systems hold the potential for concealing flat
objects like smartphones, projecting onto larger or more three-
dimensional objects may present challenges. This is due to the
spatial relationship between the object, the projector, and the user’s
viewpoint, which can result in portions of the object remaining
visible if not fully within the projector’s line of sight. Neverthe-
less, for flat objects and controlled environments, SAR remains a
promising avenue for distraction mitigation. Similarly, Societal XR
envisions XR technologies embedded in public and shared spaces,
promoting accessibility for a broader audience without relying on
wearable technology. Our techniques could contribute to this para-
digm by minimizing distractions in communal spaces such as open
offices, libraries, and classrooms. These systems can benefit from
our findings, as projection-based AR in physical spaces requires
thoughtful design considerations to effectively reduce visual dis-
tractions. Overall, our work supports efforts to mitigate distractions
without XR glasses, opening new possibilities for AR applications
in shared and public environments.

However, two concerns arise when implementing such inter-
ventions: reduced user awareness and potential accidents [47]. For
example, diminishing the visibility of objects could unintentionally
obscure safety-relevant cues, such as emergency notifications or
hazardous items. To address this, AR systems should incorporate
context-aware adaptations that dynamically prioritize the visibility
of essential information, ensuring users maintain situational aware-
ness even as distractions are minimized. Similarly, in environments
like workplaces or classrooms, overly aggressive distraction sup-
pression could reduce awareness of interpersonal interactions or en-
vironmental changes. By integrating adaptive features that balance
distraction minimization with context sensitivity, our interventions

can ensure that users remain connected to their surroundings while
benefiting from enhanced focus.

As XR technologies evolve, ethical concerns about their societal
impact must remain at the forefront. A concern is that by selec-
tively manipulating environmental elements, whether objects or
people, we risk altering the human experience and undermining
ethical norms in social interaction. This selective manipulation
affects collective social realities, raising ethical questions about
perception, who decides what is diminished, and the broader so-
cietal impacts of these choices. Adding a cultural perspective, the
potential for misuse is highlighted in popular media. For instance,
in the Black Mirror episode “White Christmas” (S2E4), individuals
are "blocked" and rendered invisible to society through mediated
reality contact lenses [64]. When blocked, the person appears as a
distorted image, ostracizing them from any social interaction. Such
a dystopian vision raises ethical concerns about consent, privacy,
and the consequences of selectively excluding people from shared
reality. As this technology matures, a thorough ethical examination
is imperative to address the concerns arising frommodifying shared
social environments.

7 Limitations & Future Work
Despite promising findings from our AR interventions, there exist
limitations. First, the HL2 offers a limited FOV, prompting us to limit
users’ positions during the experiment. This technical constraint
of the device is notable when considering the broader implications
for cognitive performance [16]. Future studies should explore AR
devices with wider FOVs to better understand their impact on cogni-
tive performance. We also envision that this limitation will subside
as more advanced and ergonomic AR devices emerge [31]. The
second limitation is the limited occlusion capability of AR devices.
Unlike VR displays, the virtual elements (e.g., holograms) often
appear translucent due to AR’s additive display. Hence, AR percep-
tion studies are typically conducted within rigorously controlled
environments to maximize the contrast and brightness between
virtual and real elements. Similarly, we addressed this by dimming
the ambient light to enhance the contrast between the virtual and
real worlds, but this method has limitations. Generally, modifying
the lighting conditions is an impractical approach for real-world
applications where lighting conditions can vary significantly. The
lack of effective occlusion could compromise the full potential of the
visual interventions. However, we reemphasize that our decision
to use AR instead of VR was intentional, as AR allows real-time
interaction with the real world without distortion (Sec. 3.2). While
VR is valuable for fully immersive experiences, its passthrough
systems are not feasible for detailed cross-reality work, creating a
sense of detachment from real-world surroundings and reactions
[103]. Moreover, achieving full DR solutions in 3D space in real-
time with varying objects remains a significant challenge, even
with VR devices. We anticipate that advancements in the occlu-
sion capabilities of head-mounted AR devices will provide valuable
insights for achieving a more immersive user experience [4, 49, 62].

Additionally, since participants had different phones and set-
tings, it was impractical to control for various disruptions and noti-
fications (e.g., mute, vibration, sound, brightness, flashing), which
could introduce further confounds. To address this, we instructed
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participants to turn off their phones, ensuring consistency across
conditions. This decision was based on prior research demonstrat-
ing that cognitive performance remains unaffected by the phone’s
power condition [86, 102]. However, we recognize that this decision
limits the ecological validity of the study, as in real-world scenarios,
phones are typically active, and notifications can influence atten-
tion. In future work, experiments could include conditions where
phones remain turned on but are placed on silent mode, reflecting
common real-world scenarios where users typically do not turn off
their phones completely [80]. Such an approach could help inves-
tigate whether AR-based interventions reduce the cognitive pull
of an active phone, even when participants know they could still
check it.

We hypothesize that DR interventions would be even more ef-
fective when phones remain on, as they would reduce the visual
salience of active notifications, thereby mitigating their distracting
influence. In contrast, the baseline condition where the phone is
physically present without AR intervention lacks any mechanism
to counteract the visual prominence of notifications. While posi-
tioning phones face down could serve as an alternative to obscure
notifications, the phone itself remains visible, and its presence may
still be tempting. Our DR interventions offer a potential advantage
by transforming the phone’s physical features into an alternative
holographic representation, which could further diminish its per-
ceptual presence in ways that baselines cannot achieve. Future
AR interventions could also incorporate adaptive features that dy-
namically respond to changes in the phone’s visual state, such as
illuminated screens or flashing alerts. For instance, holographic
overlays could intensify or reconfigure in real time to obscure the
increased brightness of notifications, ensuring consistent distrac-
tion reduction. Exploring these dynamics in future research would
provide valuable insights into how DR systems can maintain ro-
bustness and adaptability in real-world scenarios where phones are
actively used.

8 Conclusion
Smartphones, now an indispensable part of our daily lives, bring
along cognitive drawbacks simply by being present. The brain drain
phenomenon reports that having one’s smartphone within sight
can drain cognitive resources, compromising task performance.
While effective, removing smartphones from immediate reach isn’t
always practical or desirable, especially with the fear of missing out
increasing over prolonged separation. This challenge prompts us to
question whether AR could reduce their cognitive distractions by
visually canceling smartphones. We used the Microsoft HoloLens 2
to visually camouflage or substitute the phone via AR to address
this. Our results showed that both interventions improved cognitive
performance to levels similar to physically removing the phone.
Although our study used smartphones, the approach is generaliz-
able for visually canceling out any objects that may be distracting.
This introduces new design perspectives, showing AR’s potential
not only to augment but also to reduce distractions, with practical
implications for enhancing cognitive environments and managing
daily distractions.
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